उस दीर्घवृत्त का समीकरण जिसका केन्द्र $(2, -3)$, एक नाभि $(3, -3)$ और संगत शीर्ष $(4, -3)$ है, होगा
$\frac{{{{(x - 2)}^2}}}{3} + \frac{{{{(y + 3)}^2}}}{4} = 1$
$\frac{{{{(x - 2)}^2}}}{4} + \frac{{{{(y + 3)}^2}}}{3} = 1$
$\frac{{{x^2}}}{3} + \frac{{{y^2}}}{4} = 1$
इनमें से कोई नहीं
किसी $\theta \in\left(0, \frac{\pi}{2}\right)$ के लिए, यदि अतिपरवलय $x^{2}-y^{2} \sec ^{2} \theta=$ 10 को उत्केन्द्रता, दीर्घवृत्त, $x ^{2} \sec ^{2} \theta+ y ^{2}=5$ की उत्केन्द्रता का $\sqrt{5}$ गुणा है, तो दीर्घवृत्त की नाभिलम्ब जीवा की लम्बाई बराबर है -
यदि किसी दीर्घवृत्त की नाभियों के बीच की दूरी उसकी लघु अक्ष के बराबर हो, तो उसकी उत्केन्द्रता होगी
उस दीर्घवृत्त का समीकरण जिसकी नाभियाँ $( \pm 5,\;0)$ तथा एक नियता $5x = 36$ है, होगा
दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के केन्द्र से इसकी किसी स्पर्श रेखा पर डाले गये लम्ब के पाद का बिन्दुपथ है
यदि दीर्घवृत्त का नाभिलम्ब $10$ तथा लघु अक्ष नाभियों के बीच की दूरी के बराबर हो, तो दीर्घवृत्त का समीकरण है