माना दीर्घवृत्त $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a > b$, की उत्केन्द्रता $\frac{1}{4}$ है। यदि यह दीर्घवृत्त बिन्दु $\left(-4 \sqrt{\frac{2}{5}}, 3\right)$ से गुजरता है तो $a ^2+ b ^2$ बराबर होगा।

  • [JEE MAIN 2022]
  • A

    $31$

  • B

    $29$

  • C

    $32$

  • D

    $34$

Similar Questions

यदि दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ जिसकी नाभियाँ ${F_1}$ व ${F_2}$ हैं पर एक चर बिन्दु $P$ है। यदि $A$, त्रिभुज $P{F_1}{F_2}$ का क्षेत्रफल हो तो $A$ का अधिकतम मान है  

  • [IIT 1994]

यदि  $\theta $ तथा $\phi $, दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के संयुग्मी व्यासों के सिरों के उत्केन्द्र कोण हैं, तो $\theta  - \phi $ बराबर होगा  

दीर्घवृत्त $25{x^2} + 16{y^2} - 150x - 175 = 0$ की उत्केन्द्रता है

यदि दीर्घवृत्त का केन्द्र $(0, 0)$, एक नाभि $(0, 3)$ तथा अर्ध दीर्घ अक्ष $5$ हो, तो उसका समीकरण है   

दीर्घवृत्त  $\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{49}} = 1$ के नाभिलम्ब की लम्बाई होगी