Let the common tangents to the curves $4\left(x^{2}+y^{2}\right)=$ $9$ and $y ^{2}=4 x$ intersect at the point $Q$. Let an ellipse, centered at the origin $O$, has lengths of semi-minor and semi-major axes equal to $OQ$ and $6$ , respectively. If $e$ and $l$ respectively denote the eccentricity and the length of the latus rectum of this ellipse, then $\frac{l}{ e ^{2}}$ is equal to

  • [JEE MAIN 2022]
  • A

    $5$

  • B

    $4$

  • C

    $3$

  • D

    $2$

Similar Questions

The eccentricity of an ellipse, with its centre at the origin, is $\frac{1}{2}$. If one of the directrices is $x = 4$, then the equation of the ellipse is

  • [AIEEE 2004]

In an ellipse $9{x^2} + 5{y^2} = 45$, the distance between the foci is

The locus of the mid point of the line segment joining the point $(4,3)$ and the points on the ellipse $x^{2}+2 y^{2}=4$ is an ellipse with eccentricity

  • [JEE MAIN 2022]

The line $x =8$ is the directrix of the ellipse $E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ with the corresponding focus $(2,0)$. If the tangent to $E$ at the point $P$ in the first quadrant passes through the point $(0,4 \sqrt{3})$ and intersects the $x$-axis at $Q$, then $(3PQ)^2$ is equal to $........$

  • [JEE MAIN 2023]

The foci of $16{x^2} + 25{y^2} = 400$ are