ધારો કે વક્રો $4\left(x^{2}+y^{2}\right)=9$ અને $y^{2}=4 x$ ના સામાન્ય સ્પર્શકો $Q$ બિંદુમાં છેદે છે. ધારે કે $O$ કેન્દ્રવાળા એક ઉપવલયના ગૌણ અક્ષ અને પ્રધાન અક્ષ ની અર્લંધબાઈઓ અનુક્રમે $OQ$ અને $6$ છે.જો આ ઉપવલય ઉત્કેન્દ્રતા $e$ અને નાભિલંબની લંબાઈ $l$ હોય, તો $\frac{l}{ e ^{2}}=\dots\dots\dots$
$5$
$4$
$3$
$2$
જો ઉગમ બિંદુ પરથી ઉપવલય $\frac{x^2}{4}+\frac{y^2}{b^2}=1, b < 2$ નાં અભિલંબનું મહત્તમ અંતર $1$ હોય,તો ઉપવલયની ઉત્કેન્દ્રતા $.........$ છે.
$c$ ની કેટલી કિમંતો માટે રેખા $y = 4x + c$ એ વક્ર $\frac{{{x^2}}}{4} + {y^2} = 1$ ને સ્પર્શે છે .
ઉપવલય ${E_1}\,\,:\,\,\frac{{{x^2}}}{9}\,\, + \;\,\frac{{{x^2}}}{4}\, = \,\,1$એ લંબચોરસ $R$ કે જેની બાજુઓ યામાક્ષોને સમાંતર હોય તેની અંદર આવેલ છે બીજુ ઉપવલય $E_2\ (0, 4)$ તો ઉપવલય $E_2$ ની ઉત્કેન્દ્રતા :
જો ઉપવલય $3x^2 + 5y^2 = 32$ ના બિંદુ $P(2, 2)$ આગળના સ્પર્શક અને અભિલંબ $x-$ અક્ષને અનુક્રમે બિંદુ $Q$ અને $R$ આગળ છેદે તો ત્રિકોણ $PQR$ નું ક્ષેત્રફળ = ............. ચો એકમ
ઉપવલય $\frac{{{x^2}}}{{27}} + {y^2} = 1$ પર બિંદુ $(3\sqrt 3 \cos \theta ,\;\sin \theta )$ કે જયાં $\theta \in (0,\;\pi /2)$ માંથી સ્પર્શક દોરવામાં આવે છે.તો $\theta $ ની . . . . કિંમત માટે સ્પર્શકે અક્ષો પર બનાવેલ અંત:ખંડનો સરવાળો ન્યૂનતમ થાય.