જો ઉપવલય $3x^2 + 5y^2 = 32$ ના બિંદુ $P(2, 2)$ આગળના સ્પર્શક અને અભિલંબ $x-$ અક્ષને અનુક્રમે બિંદુ $Q$ અને $R$ આગળ છેદે તો ત્રિકોણ $PQR$ નું ક્ષેત્રફળ = ............. ચો એકમ
$\frac {34}{15}$
$\frac {68}{15}$
$\frac {14}{3}$
$\frac {16}{3}$
જેની ઉત્કેન્દ્રતા $e = \frac{1}{2}$ તથા એક નિયામિકા $x=4$ હોય તેવા ઊગમબિંદુ કેન્દ્ર હોય તેવા ઉપવલયનું સમીકરણ મેળવો.
પ્રથમ ચરણમાં રેખા $y=m x$ અને ઉપવલય $2 x^{2}+y^{2}=1$ બિંદુ $\mathrm{P}$ આગળ છેદે છે . જો બિંદુ $P$ આગળનો અભિલંભ અક્ષોને $\left(-\frac{1}{3 \sqrt{2}}, 0\right)$ અને $(0, \beta)$ આગળ છેદે છે તો $\beta$ મેળવો.
ઉપવલય $\frac{\mathrm{x}^2}{\mathrm{a}^2}+\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1, \mathrm{a}>\mathrm{b}$ ની નાભિ અને નાભિલંબની લંબાઈ અનુક્રમે $( \pm 5,0)$ અને $\sqrt{50}$ છે, તો અતિવલય $\frac{x^2}{a^2}-\frac{y^2}{a^2 b^2}=1$ ની ઉત્કેન્દ્રતાનો વર્ગ.........................
જે ઉપવલયની અક્ષો યામાક્ષો હોય અને જે બિંદુ $(-3, 1)$માંથી પસાર થતું હોય અને ઉત્કેન્દ્રીતા $\sqrt {2/5} $ હોય, તે ઉપવલયનું સમીકરણ :
ધારો કે $PQ$ એ પરવલય $y^{2}=4 x$ ની એક એવી નાભિજીવા છે કે જે બિંદુ $(3,0)$ આગળ $\frac{\pi}{2}$ નો ખૂણો આંતરે છે.ધારો કે રેખાખંડ $PQ$ એ ઉપવલય $E : \frac{x^{2}}{ a ^{2}}+\frac{y^{2}}{ b ^{2}}=1, a ^{2}> b ^{2}$ ની પણ નાભિજીવા છે. ને $e$ એ ઉપવલય $E$ ની ઉત્કેન્દ્રતા હોય,તો $\frac{1}{e^{2}}$ નું મૂલ્ય $\dots\dots$છે.