यदि प्रसरण $v$ तथा मानक विचलन है, तब
$v = {\sigma ^2}$
${v^2} = \sigma $
$v = \frac{1}{\sigma }$
$v = \frac{1}{{{\sigma ^2}}}$
यदि आंकड़ों $6,10,7,13, a , 12, b , 12$ का माध्य तथा प्रसरण क्रमशः $9$ तथा $\frac{37}{4}$ हैं, तो $(a-b)^{2}$ बराबर है
निम्नलिखित आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए।
तीन के प्रथम $10$ गुणज
$15$ प्रेक्षणों का माध्य और मानक विचलन क्रमश: $8$ और $3$ पाया गया है। इसकी पुन जॉच करने पर यह पाया गया की, प्रेक्षणों में 20 को 5 के रूप में गलत पड़ा गया था, तब सही प्रसरण बराबर है -
संख्याओं $a , b , 8,5,10$ का माध्य $6$ तथा इनका प्रसरण $6.8$ है। यदि माध्य के सापेक्ष संख्याओं का मानक विचलन $M$ है, तो $25\,M$ बराबर है
आंकडों
$x_i$ | $0$ | $1$ | $5$ | $6$ | $10$ | $12$ | $17$ |
$f_i$ | $3$ | $2$ | $3$ | $2$ | $6$ | $3$ | $3$ |
का प्रसरण $\sigma^2$ बराबर है ..........