જો $(1 + x)(1 + x + x^2)(1 + x + x^2 + x^3)\,\, ......\,\,$$(1 + x + x^2 + ..... + x^{30}) = $$a_0 + a_1x + a_2x^2$ .....$+$ $a_{465}x^{465}$, હોય તો $a_0 + a_2 + a_4 + ......... +$ ની કિમત મેળવો
$(31)!$
$\frac{(31)!}{2}$
$(30)!$
$\frac{(60)!}{2}$
Let n and k be positive integers such that $n \ge \frac{{k(k + 1)}}{2}$. The number of solutions $({x_1},{x_2},....{x_k})$, ${x_1} \ge 1,{x_2} \ge 2,....{x_k} \ge k,$ all integers, satisfying ${x_1} + {x_2} + .... + {x_k} = n$, is
$(2x + 1) (2x + 3) (2x + 5)----- (2x + 99)$ ના વિસ્તરણમાં $x^{49}$ નો સહગુણક મેળવો
જો ${(1 + x)^{15}} = {C_0} + {C_1}x + {C_2}{x^2} + ...... + {C_{15}}{x^{15}},$ તો ${C_2} + 2{C_3} + 3{C_4} + .... + 14{C_{15}} = $
$n\left[ {x - \left( {\frac{{^n{C_0}{ + ^n}{C_1}}}{{^n{C_0}}}} \right)} \right]\left[ {\frac{x}{2} - \left( {\frac{{^n{C_1}{ + ^n}{C_2}}}{{^n{C_1}}}} \right)} \right]\left[ {\frac{x}{3} - \left( {\frac{{^n{C_2}{ + ^n}{C_3}}}{{^n{C_2}}}} \right)} \right].....$ $ \left[ {\frac{x}{n} - \left( {\frac{{^n{C_{n - 1}}{ + ^n}{C_n}}}{{^n{C_{n - 1}}}}} \right)} \right]$ ના વિસ્તરણમાં $x^{n-6}$ નો સહગુણક મેળવો
(જ્યાં $n = n . (n -1) . (n -2).... 3.2.1$)
જો ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .... + {C_n}{x^n}$, તો ${C_0}{C_2} + {C_1}{C_3} + {C_2}{C_4} + {C_{n - 2}}{C_n}$= . . .