दो भौतिक राशियों $A$ तथा $\mathrm{B}$ की परिकल्पना कीजिये जो एक दूसरे से संबंध $E=\frac{B-x^2}{A t}$ के द्वारा संबंधित है जहाँ $\mathrm{E}, \mathrm{x}$ तथा $\mathrm{t}$ की विमाएँ क्रमशः ऊर्जा, लम्बाई तथा समय की विमाओं के समान है। $\mathrm{AB}$ की विमां है :

  • [JEE MAIN 2024]
  • A

    $\mathrm{L}^{-2} \mathrm{M}^1 \mathrm{~T}^0$

  • B

    $\mathrm{L}^2 \mathrm{M}^{-1} \mathrm{~T}^1$

  • C

    $\mathrm{L}^{-2} \mathrm{M}^{-1} \mathrm{~T}^1$

  • D

    $\mathrm{L}^0 \mathrm{M}^{-1} \mathrm{~T}^1$

Similar Questions

यदि वेग $v,$ त्वरण $A$ तथा बल $F$ को मूल राशियाँ मान लिया जाए, तो कोणीय संवेग का $v,\,A$ और $F$ के पदों में विमीय सूत्र होगा

यदि $P$ विकिरण दाब, $c$ प्रकाश की चाल एवं $Q$ प्रति सैकन्ड इकाई क्षेत्रफल पर गिरने वाली विकिरण ऊर्जा को प्रदर्शित करते है, तो अशून्य पूर्णांक $x,\,y,$तथा $z$ का मान, जबकि ${P^x}{Q^y}{c^z}$ विमाहीन है, होगा

  • [AIPMT 1992]

यदि प्लांक नियतांक $(h)$, निर्वात में प्रकाश की चाल $(c)$ तथा न्यूटन का गुरुत्वाकर्षण नियतांक $(G)$ तीन मौलिक नियतांक हो, तो निम्नलिखित में किसकी विमा लम्बाई की विमा होगी

  • [NEET 2016]

दो राशियों $A$ तथा $B$ की विमायें भिन्न है। निम्न में से किस गणितीय संक्रिया की भौतिक सार्थकता हैं

भौतिक स्थिरांकों के निम्नलिखित संयोजन से (अपने साधारण प्रयोग में लिये गये चिन्हों द्वारा प्रदर्शित), केवल वह संयोजन, जो कि इकाइयों के विभित्र निकायों में एक ही मान रखता है

  • [JEE MAIN 2014]