सूत्र $X = 3Y{Z^2}$ में $X$ और $Z$ क्रमश: धारिता और चुम्बकीय क्षेत्र की विमायें हैं। $SI$ पद्धति में $Y$ की विमायें हैं
$[{M^{ - 2}}\,{L^0}\,{T^{ - 4}}\,{A^{ - 2}}]$
$[{M^{ - 3}}\,{L^{-2}}\,{T^8}\,{A^{ 4}}]$
$[{M^{ - 2}}\,{L^{-2}}\,{T^6}\,{A^3}]$
$[{M^{ - 1}}\,{L^{-2}}\,{T^4}\,{A^2}]$
यदि प्रकाश का वेग $(c)$, गुरुत्वीय त्वरण $(g)$ तथा दाब $(P)$ को मूल राशि माना जाए तो, गुरुत्वाकर्षण नियतांक की विमा होगी
किसी वृत्त की समीकरण $\mathrm{x}^2+\mathrm{y}^2=\mathrm{a}^2$, हैं जहां $\mathrm{a}$ त्रिज्या है। मूलबिन्दु का मान $(0,0)$, से बदलने पर यदि समीकरण परिवर्तित होती है तो नए समीकरण $(x-A t)^2+\left(y-\frac{t}{B}\right)^2=a^2$ में $A$ एवं $B$ की सही विमाएं ज्ञात कीजिए। $t$ की विमाएं $\left[\mathrm{T}^{-1}\right]$ है।
एक राशि $f$ का सूत्र $f =\sqrt{\frac{ hc ^{5}}{ G }}$ है। यहाँ पर $c$ प्रकाश की गति $G$ सर्वव्यापी गुरूत्वाकर्षण स्थिरांक तथा $h$ प्लांक स्थिरांक है। $f$ की विमाएँ निम्न में से किसके समान है ?
निम्नलिखित में से कौन सी राशि विमा विहीन है?