જો $I = \mathop \smallint \limits_0^1 \frac{{\sin x}}{{\sqrt x }}\;dx$ અને$\;J = \mathop \smallint \limits_0^1 \frac{{\cos x}}{{\sqrt x }}\;dx$ આપેલ હોય તો નીચેના પૈકી કયું સત્ય હશે?
$I > \frac{2}{3}$ અને $J > 2$
$\;I < \frac{2}{3}$ અને $J < 2$
$\;I < \frac{2}{3}$ અને $J > 2$
$\;I > \frac{2}{3}$ અને $J < 2$
જો ${I_1} = \int_0^1 {{2^{{x^2}}}dx,\;} {I_2} = \int_0^1 {{2^{{x^3}}}dx} ,\;{I_3} = \int_1^2 {{2^{{x^2}}}dx} $,${I_4} = \int_1^2 {{2^{{x^3}}}dx} $, તો
ધારો કે $y=f(x)$ એ $(-5,5)$ માં ત્રિ-વિકલનીય વિધેય છે. ધારો કે $(1, f(1))$ અને $(3, f(3))$ આગળના સ્પર્શકો, ધન $x$-અક્ષ સાથે અનુક્રમે $\pi / 6$ અને $\pi / 4$ ના ખૂણા બનાવે છે. જો $27 \int_1^3\left(\left(f^{\prime}(t)\right)^2+1\right) f^{\prime \prime}(t) d t=\alpha+\beta \sqrt{3}$ જ્યાં $\alpha, \beta$ પૂણાંકો હોય, તો $\alpha+\beta$ નું મૂલ્ય......................છે.
અહી $J=\int_0^1 \frac{x}{1+x^8} d x$
આપેલ વિધાન જુઓ
$I$. $J>\frac{1}{4}$
$II$. $J<\frac{\pi}{8}$ હોય તો
દરેક $x \in R$ માટે અહી $f(x)=|\sin x|$ અને $g(x)=\int_0^x f(t) d t $ છે. જો $p(x)=g(x)-\frac{2}{\pi} x$ હોય તો
જો દરેક ત્રીજોડ $(a, b, c)$ માટે $f(x)=a+b x+c x^{2}$ હોય તો $\int \limits_{0}^{1} f(\mathrm{x}) \mathrm{d} \mathrm{x}$ ની કિમંત મેળવો.