Let $I = \mathop \smallint \limits_0^1 \frac{{\sin x}}{{\sqrt x }}\;dx$ and $\;J = \mathop \smallint \limits_0^1 \frac{{\cos x}}{{\sqrt x }}\;dx$ Then which one of  the following is true?

  • [AIEEE 2008]
  • A

    $I > \frac{2}{3}$ and $J > 2$

  • B

    $\;I < \frac{2}{3}$ and $J < 2$

  • C

    $\;I < \frac{2}{3}$ and $J > 2$

  • D

    $\;I > \frac{2}{3}$ and $J < 2$

Similar Questions

Let $y=f(x)$ be a thrice differentiable function in $(-5,5)$. Let the tangents to the curve $y=f(x)$ at $(1, \mathrm{f}(1))$ and $(3, \mathrm{f}(3))$ make angles $\frac{\pi}{6}$ and $\frac{\pi}{4}$, respectively with positive $x$-axis. If $27 \int_1^3\left(\left(f^{\prime}(t)\right)^2+1\right) f^{\prime \prime}(t) d t=\alpha+\beta \sqrt{3} \quad$ where $\alpha, \quad \beta$ are integers, then the value of $\alpha+\beta$ equals

  • [JEE MAIN 2024]

The number of continuous functions $f:[0,1] \rightarrow R$ that satisfy $\int \limits_0^1 x f(x) d x=\frac{1}{3}+\frac{1}{4} \int \limits_0^1(f(x))^2 d x$ is

  • [KVPY 2017]

If $f (x) = \int\limits_0^\pi  {\frac{{t\,\sin t\,dt}}{{\sqrt {1 + {{\tan }^2}x\,\,\,{{\sin }^2}t} }}\,} $  for $0 < x < \frac{\pi }{2}\,$

Let for $x \in R , S_0( x )= x$,$S _{ k }( x )= C _{ k } x + k \int _0^{ x } S _{ k -1}(t) d t$, where $C _0=1, C _{ k }=1-\int_0^1 S _{ k -1}( x ) dx , k =1,2,3 \ldots$. Then $S _2(3)+6 C _3$ is equal to $...........$.

  • [JEE MAIN 2023]

The numbers $P, Q$ and $R$ for which the function $f(x) = P{e^{2x}} + Q{e^x} + Rx$ satisfies the conditions $f(0) = - 1,$ $f'(\log 2) = 31$ and $\int_0^{\log 4} {[f(x) - Rx]\,dx = \frac{{39}}{2}} $ are given by