જો દરેક ત્રીજોડ $(a, b, c)$ માટે $f(x)=a+b x+c x^{2}$ હોય તો $\int \limits_{0}^{1} f(\mathrm{x}) \mathrm{d} \mathrm{x}$ ની કિમંત મેળવો.
$\frac{1}{2}\left\{f(1)+3 f\left(\frac{1}{2}\right)\right\}$
$2\left\{3 f(1)+2 f\left(\frac{1}{2}\right)\right\}$
$\frac{1}{6}\left\{f(0)+f(1)+4 f\left(\frac{1}{2}\right)\right\}$
$\frac{1}{3}\left\{f(0)+f\left(\frac{1}{2}\right)\right\}$
ધારો કે $\operatorname{Max} \limits _{0 \leq x \leq 2}\left\{\frac{9-x^{2}}{5-x}\right\}=\alpha$ અને $\operatorname{Min} \limits _ {0 \leq x \leq 2}\left\{\frac{9-x^{2}}{5-x}\right\}=\beta$ છે.
જો $\int\limits_{\beta-\frac{8}{3}}^{2 a-1} \operatorname{Max}\left\{\frac{9- x ^{2}}{5- x }, x \right\} dx =\alpha_{1}+\alpha_{2} \log _{e}\left(\frac{8}{15}\right)$ હોય, તો $\alpha_{1}+\alpha_{2}$ = ...........
જો $\int\limits_0^1 {(1 + |\sin x|)(a{x^2} + bx + c)dx = \int\limits_0^2 {(1 + |\sin x|)(a{x^2} + bx + c)} } dx$
હોય તો સમીકરણ ${a{x^2} + bx + c}=0$ ના બીજ એ . . . .
વિધેય $L(x) = \int_1^x {\frac{{dt}}{t}} $ એ . . . . સમીકરણનું સમાધાન કરે.
જો $b _{ n }=\int \limits_{0}^{\frac{\pi}{2}} \frac{\cos ^{2} nx }{\sin x } dx , n \in N$ હોય તો
જો $\frac{d}{{dx}}\,G\left( x \right) = \frac{{{e^{\tan \,x}}}}{x},\,x \in \left( {0,\pi /2} \right)$, તો $\int\limits_{1/4}^{1/2} {\frac{2}{x}} .{e^{\tan \,\left( {\pi \,{x^2}} \right)}}dx$ મેળવો.