ધારો કે $PS$ એ શિરોબિંદુઓ $P(2,2) , Q(6,-1) $ અને $R(7,3) $ વાળા ત્રિકોણની મધ્યગા છે. $(1,-1) $ માંથી પસાર થતી તથા $PS $ ને સંમાતર હોય તેવી રેખાનું સમીકરણ . . . . .. . છે.
$4x + 7y + 3 = 0$
$\;2x - 9y - 11 = 0$
$\;4x - 7y - 11 = 0$
$\;2x + 9y + 7 = 0$
જો સમબાજુ ત્રિકોણનું એક શિરોબિંદુ ઊંગમબિંદુ પર હોય અને તેની બાજુની લંબાઇ $'a'$ હોય તથા બાકીના શિરોબિંદુઓ રેખા $x - \sqrt{3} y = 0$ પર હોય તો ત્રિકોણનું તૃતીય શિરોબિંદુ મેળવો
એવી કેટલી સુરેખ રેખાઓ મળે કે જે બિંદુ $(2, 3)$ માંથી પસાર થાય અને યામક્ષો સાથે ત્રિકોણ બનાવે કે જેનું ક્ષેત્રફળ $12 \,sq$. units હોય
રેખાઓ $ax \pm by \pm c = 0$ થી બનતા સ.બા.ચનું ક્ષેત્રફળ મેળવો.
સમદ્રિબાજુ ત્રિકોણની બે સમાન બાજુઓના સમીકરણ $7x - y + 3 = 0$ અને $x + y - 3 = 0$ છે અને તેની ત્રીજી બાજુ બિંદુ $(1, -10) $ માંથી પસાર થતી હોય, તો તેની ત્રીજી બાજુ બિંદુ નું સમીકરણ શોધો.
ત્રણ બિંદુ $P, Q, R$ આપેલ છે જ્યાં બિંદુ $P(5, 3)$ હોય અને બિંદુ $R$ એ $x-$ અક્ષ પર આવેલ છે જો રેખા $RQ$ નું સમીકરણ $x - 2y = 2$ અને રેખા $PQ$ એ $x-$ અક્ષ ને સમાંતર હોય તો $\Delta PQR$ ના મધ્યકેન્દ્રનું સમીકરણ મેળવો