माना कि $X=\left({ }^{10} C_1\right)^2+2\left({ }^{10} C_2\right)^2+3\left({ }^{10} C_3\right)^2+\cdots+10\left({ }^{10} C_{10}\right)^2,$ जहाँ ${ }^{10} C_r, r \in\{1,2, \ldots, 10\}$, द्विपद गुणांकों (binomial coefficients) को दर्शाते हैं। तब $\frac{1}{1430} X$ का मान है ..........|
$430$
$435$
$540$
$646$
$\frac{1}{1 ! 50 !}+\frac{1}{3 ! 48 !}+\frac{1}{5 ! 46 !}+\ldots+\frac{1}{49 ! 2 !}+\frac{1}{51 ! 1 !}$ का मान है:
माना $(1+ x )^{ n }$ के प्रसार में $x ^{ r }$ का द्विपद गुणांक ${ }^{ n } C _{ r }$ है। यदि $\sum_{ k =0}^{10}\left(2^{2}+3 k \right)= C _{ k }=\alpha .3^{10}+\beta .2^{10}, \alpha$, $\beta \in R$ है, $\alpha+\beta$ बराबर है ............ |
माना $m, n \in N$ तथा $\operatorname{gcd}(2, n)=1$ हैं। यदि $30\left(\begin{array}{l}30 \\ 0\end{array}\right)+29\left(\begin{array}{l}30 \\ 1\end{array}\right)+\ldots+2\left(\begin{array}{l}30 \\ 28\end{array}\right)+1\left(\begin{array}{l}30 \\ 29\end{array}\right)= n .2^{ m }$ हैं तो $n + m$ बराबर है I (यहाँ) $\left(\begin{array}{l} n \\ k \end{array}\right)={ }^{ n } C _{ k }$ है।
यदि ${C_0},{C_1},{C_2},.......,{C_n}$ द्विपद गुणांक हो, तो $2.{C_1} + {2^3}.{C_3} + {2^5}.{C_5} + ....$ का $n$ पदों तक मान होगा
${(1 + x - 3{x^2})^{2163}}$ के विस्तार में गुणांकों का योग होगा