Let $z$ be a purely imaginary number such that ${\mathop{\rm Im}\nolimits} (z) < 0$. Then $arg\,(z)$ is equal to

  • A

    $\pi $

  • B

    $\frac{\pi }{2}$

  • C

    $0$

  • D

    $ - \frac{\pi }{2}$

Similar Questions

If $\frac{\pi }{2} < \alpha  < \frac{3}{2}\pi $ , then the modulus and argument of $(1 + cos\, 2\alpha ) + i\, sin\, 2\alpha $ is respectively

Find the complex number z satisfying the equations $\left| {\frac{{z - 12}}{{z - 8i}}} \right| = \frac{5}{3},\left| {\frac{{z - 4}}{{z - 8}}} \right| = 1$

$(z + a)(\bar z + a)$, where $a$ is real, is equivalent to

$|{z_1} + {z_2}|\, = \,|{z_1}| + |{z_2}|$ is possible if

Find the modulus and argument of the complex numbers:

$\frac{1+i}{1-i}$