$(z + a)(\bar z + a)$, where $a$ is real, is equivalent to

  • A

    $|z - a|$

  • B

    ${z^2} + {a^2}$

  • C

    $|z + a{|^2}$

  • D

    None of these

Similar Questions

Argument and modulus of $\frac{{1 + i}}{{1 - i}}$ are respectively

If $\frac{{z - i}}{{z + i}}(z \ne - i)$ is a purely imaginary number, then $z.\bar z$ is equal to

If complex number $z = x + iy$ is taken such that the amplitude of fraction $\frac{{z - 1}}{{z + 1}}$ is always $\frac{\pi }{4}$, then

The value of $|z - 5|$if $z = x + iy$, is

If $\sqrt 3 + i = (a + ib)(c + id)$, then ${\tan ^{ - 1}}\left( {\frac{b}{a}} \right) + $ ${\tan ^{ - 1}}\left( {\frac{d}{c}} \right)$ has the value