$(z + a)(\bar z + a)$, where $a$ is real, is equivalent to
$|z - a|$
${z^2} + {a^2}$
$|z + a{|^2}$
None of these
Argument and modulus of $\frac{{1 + i}}{{1 - i}}$ are respectively
If $\frac{{z - i}}{{z + i}}(z \ne - i)$ is a purely imaginary number, then $z.\bar z$ is equal to
If complex number $z = x + iy$ is taken such that the amplitude of fraction $\frac{{z - 1}}{{z + 1}}$ is always $\frac{\pi }{4}$, then
The value of $|z - 5|$if $z = x + iy$, is
If $\sqrt 3 + i = (a + ib)(c + id)$, then ${\tan ^{ - 1}}\left( {\frac{b}{a}} \right) + $ ${\tan ^{ - 1}}\left( {\frac{d}{c}} \right)$ has the value