Find the complex number z satisfying the equations $\left| {\frac{{z - 12}}{{z - 8i}}} \right| = \frac{5}{3},\left| {\frac{{z - 4}}{{z - 8}}} \right| = 1$

  • A

    $6$

  • B

    $6 \pm 8i$

  • C

    $6 + 8i,\,6 + 17i$

  • D

    None of these

Similar Questions

Let $z$ be complex number satisfying $|z|^3+2 z^2+4 z-8=0$, where $\bar{z}$ denotes the complex conjugate of $z$. Let the imaginary part of $z$ be nonzero.

Match each entry in List-$I$ to the correct entries in List-$II$.

List-$I$ List-$II$
($P$) $|z|^2$ is equal to ($1$) $12$
($Q$) $|z-\bar{z}|^2$ is equal to ($2$) $4$
($R$) $|z|^2+|z+\bar{z}|^2$ is equal to ($3$) $8$
($S$) $|z+1|^2$ is equal to ($4$) $10$
  ($5$) $7$

The correct option is:

  • [IIT 2023]

$arg\,(5 - \sqrt 3 i) = $

Find the modulus of $\frac{1+i}{1-i}-\frac{1-i}{1+i}$

For the complex number $z$, one from $z + \bar z$ and $z\,\bar z$ is

If $z$ and $\omega$ are two complex numbers such that $|z \omega|=1$ and $\arg (z)-\arg (\omega)=\frac{3 \pi}{2}$, then $\arg \left(\frac{1-2 \bar{z} \omega}{1+3 \bar{z} \omega}\right)$ is:

(Here arg(z) denotes the principal argument of complex number $z$ )

  • [JEE MAIN 2021]