Let $z$ be a complex number (not lying on $X$-axis) of maximum modulus such that $\left| {z + \frac{1}{z}} \right| = 1$. Then
${\mathop{\rm Im}\nolimits} (z) = 0$
${\mathop{\rm Re}\nolimits} (z) = 0$
$amp(z) = \pi $
None of these
Find the conjugate of $\frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)}$.
If complex numbers $z_1$, $z_2$ are such that $\left| {{z_1}} \right| = \sqrt 2 ,\left| {{z_2}} \right| = \sqrt 3$ and $\left| {{z_1} + {z_2}} \right| = \sqrt {5 - 2\sqrt 3 }$, then the value of $|Arg z_1 -Arg z_2|$ is
If $|{z_1}|\, = \,|{z_2}|$ and $arg\,\,\left( {\frac{{{z_1}}}{{{z_2}}}} \right) = \pi $, then ${z_1} + {z_2}$ is equal to
If $z$ is a complex number such that $\left| z \right| \ge 2$ , then the minimum value of $\left| {z + \frac{1}{2}} \right|$:
Find the modulus and the argument of the complex number $z=-1-i \sqrt{3}$.