Let $\alpha$ and $\beta$ be the sum and the product of all the non-zero solutions of the equation $(\bar{z})^2+|z|=0, z \in C$. Then $4\left(\alpha^2+\beta^2\right)$ is equal to :
$6$
$4$
$8$
$2$
If $|z - 25i| \le 15$, then $|\max .amp(z) - \min .amp(z)| = $
The amplitude of $\frac{{1 + \sqrt 3 i}}{{\sqrt 3 + 1}}$ is
If $z = \frac{{ - 2}}{{1 + \sqrt 3 \,i}}$ then the value of $arg\,(z)$ is
If $z$ is a complex number, then $(\overline {{z^{ - 1}}} )(\overline z ) = $
If complex numbers $z_1$ and $z_2$ both satisfy $z + \overline z = 2 | z -1 |$ and $arg(z_1 -z_2) = \frac{\pi}{3} ,$ then value of $Im (z_1 + z_2)$ is, where $Im (z)$ denotes imaginary part of $z$ -