If complex numbers $z_1$ and $z_2$ both satisfy $z + \overline z  = 2 | z -1 |$ and $arg(z_1 -z_2) = \frac{\pi}{3} ,$ then value of $Im (z_1 + z_2)$ is, where $Im (z)$ denotes imaginary part of $z$ -

  • A

    $\sin \frac{\pi }{3}$

  • B

    $\cos ec \frac{\pi }{3}$

  • C

    $\tan \frac{\pi }{3}$

  • D

    $\cot \frac{\pi }{3}$

Similar Questions

If ${z_1} = a + ib$ and ${z_2} = c + id$ are complex numbers such that $|{z_1}| = |{z_2}| = 1$ and $R({z_1}\overline {{z_2}} ) = 0,$ then the pair of complex numbers ${w_1} = a + ic$ and ${w_2} = b + id$ satisfies

  • [IIT 1985]

If $z_{1}=2-i, z_{2}=1+i,$ find $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|$

Let $z$ =${i^{2i}}$ , then $|z|$ is (where $i$ =$\sqrt { - 1}$ )

If  $z_1 = a + ib$ and $z_2 = c + id$ are complex numbers such that   $| z_1 | = | z_2 |=1$ and  $R({z_1}\overline {{z_2}} ) = 0$, then the pair of complex numbers $w_1 = a + ic$ and $w_2 = b + id$ satisfies

If the equation, $x^{2}+b x+45=0(b \in R)$ has conjugate complex roots and they satisfy $|z+1|=2 \sqrt{10},$ then

  • [JEE MAIN 2020]