If $z = \frac{{ - 2}}{{1 + \sqrt 3 \,i}}$ then the value of $arg\,(z)$ is

  • A

    $\pi $

  • B

    $\pi /3$

  • C

    $2\pi /3$

  • D

    $\pi /4$

Similar Questions

Let $z$ be a complex number with non-zero imaginary part. If $\frac{2+3 z+4 z^2}{2-3 z+4 z^2}$ is a real number, then the value of $|z|^2$ is. . . . . 

  • [IIT 2022]

Amplitude of $\left( {\frac{{1 - i}}{{1 + i}}} \right)$ is

Find the modulus and argument of the complex number $\frac{1+2 i}{1-3 i}$

The inequality $|z - 4|\, < \,|\,z - 2|$represents the region given by

  • [IIT 1982]

If ${z_1},{z_2}$ and ${z_3},{z_4}$ are two pairs of conjugate complex numbers, then $arg\left( {\frac{{{z_1}}}{{{z_4}}}} \right) + arg\left( {\frac{{{z_2}}}{{{z_3}}}} \right)$ equals