$\left(\frac{1}{3} x^{\frac{1}{3}}+\frac{1}{2 x^{\frac{2}{3}}}\right)^{18}$ ના વિસ્તરણમાં સાતમા અને તેરમા પદ્દોના સહગુણકો અનુક્રમે $\mathrm{m}$ અને $\mathrm{n}$ છે. તો $\left(\frac{\mathrm{n}}{\mathrm{m}}\right)^{\frac{1}{3}}=$.....................

  • [JEE MAIN 2024]
  • A

     $\frac{4}{9}$

  • B

     $\frac{1}{9}$

  • C

    $\frac{1}{4}$

  • D

     $\frac{9}{4}$

Similar Questions

$(\mathrm{x}+\sqrt{\mathrm{x}^{2}-1})^{6}+(\mathrm{x}-\sqrt{\mathrm{x}^{2}-1})^{6}$ ના વિસ્તરણમાં  $x^{4}$ અને $x^{2}$ ના સહગુણકો $\alpha$ અને $\beta$ હોય તો  . . . .  

  • [JEE MAIN 2020]

જો $\left( {1 + ax + b{x^2}} \right){\left( {1 - 2x} \right)^{18}}$ ના વિસ્તરણમાં ${x^3}$ અને ${x^4}$ બંનેના સહગુણકો શૂન્ય હોય, તો $ (a,b) =$ ___________. 

  • [JEE MAIN 2014]

${(1 + x)^{15}}$ ના વિસ્તરણમાં ${(2r + 3)^{th}}$ અને ${(r - 1)^{th}}$ ના સહગુણક સમાન હોય ,તો r મેળવો.

જો ${[x + {x^{{{\log }_{10}}}}^{(x)}]^5}$ ના વિસ્તરણમાં ત્રીજું પદ $10,00,000$ હોય તો $x$ મેળવો.

જો ${\left( {a{x^2} + \frac{1}{{bx}}} \right)^{11}}$ ના વિસ્તરણમાં ${x^{7}}$ નો સહગુણક એ ${\left( {ax - \frac{1}{{b{x^2}}}} \right)^{11}}$ ના વિસ્તરણમાં ${x^{-7}}$ નો સહગુણક સમાન હોય , તો $ab =$

  • [AIEEE 2005]