Let $\mathrm{m}$ and $\mathrm{n}$ be the coefficients of seventh and thirteenth terms respectively in the expansion of $\left(\frac{1}{3} \mathrm{x}^{\frac{1}{3}}+\frac{1}{2 \mathrm{x}^{\frac{2}{3}}}\right)^{18}$. Then $\left(\frac{\mathrm{n}}{\mathrm{m}}\right)^{\frac{1}{3}}$ is :

  • [JEE MAIN 2024]
  • A

     $\frac{4}{9}$

  • B

     $\frac{1}{9}$

  • C

    $\frac{1}{4}$

  • D

     $\frac{9}{4}$

Similar Questions

In the expansion of ${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$, the coefficient of ${x^4}$is

  • [IIT 1983]

The coefficient of the term independent of $x$ in the expansion of $(1 + x + 2x^3)$ ${\left( {\frac{3}{2}{x^2} - \frac{1}{{3x}}} \right)^9}$ is

If the greatest value of the term independent of $^{\prime}x^{\prime}$ in the expansion of $\left(x \sin \alpha+a \frac{\cos \alpha}{x}\right)^{10}$ is $\frac{10 !}{(5 !)^{2}}$, then the value of $' a^{\prime}$ is equal to:

  • [JEE MAIN 2021]

In the expansion of ${(1 + x)^n}$ the coefficient of $p^{th}$ and ${(p + 1)^{th}}$ terms are respectively $p$ and $q$. Then $p + q = $

If the coefficients of $x^{-2}$ and $x^{-4}$ in the expansion of ${\left( {{x^{\frac{1}{3}}} + \frac{1}{{2{x^{\frac{1}{3}}}}}} \right)^{18}}\,,\,\left( {x > 0} \right),$ are $m$ and $n$  respectively, then $\frac{m}{n}$ is equal to 

  • [JEE MAIN 2016]