माना $3,7,11,15, \ldots, 403$ तथा $2,5,8,11, \ldots$ $404$ दो समान्तर श्रेढ़ियाँ है तो इनमें उभयनिष्ठ पदों का योग है .............

  • [JEE MAIN 2024]
  • A

    $6696$

  • B

    $6697$

  • C

    $668$

  • D

    $6699$

Similar Questions

यदि $m$ समान्तर श्रेणियों के $n$ पदों के योग क्रमश: ${S_1},\;{S_2},\;{S_3},$……${S_m}$ हैं और इनके प्रथम पद $1,\;2,\;3,$…..$,m$ और सार्वअन्तर क्रमश: $1,\;3,\;5,$……$2m - 1$ हों, तो ${S_1} + {S_2} + {S_3} + ....... + {S_m}$ का मान है

माना तीन अंक $a, b, c$ $A.P.$ में हैं। इनमें से प्रत्येक अंक को तीन बार प्रयोग कर $9$ अंको की संख्याएँ इस प्रकार बनाई जाती है कि तीन क्रमागत संख्याएँ कम से कम एक बार $A.P.$ में हो। इस प्रकार की कितनी संख्याएँ बनाई जा सकती है ?

  • [JEE MAIN 2023]

माना $\alpha, \beta$ तथा $\gamma$ तीन धनात्मक वास्तविक संख्याएं हैं। माना $f ( x )=\alpha x ^5+\beta x ^3+\gamma x , x \in R$ तथा $g : R \rightarrow R$ इस प्रकार हैं कि सभी $x \in R$ के लिए $g ( f ( x ))= x$ है। यदि $a _1, a _2, a _3, \ldots, a _n$ एक संमातर श्रेढ़ी में है, जिनका माध्य शुन्य है, तो $f \left( g \left(\frac{1}{ n } \sum \limits_{ i =1}^{ n } f \left( a _{ i }\right)\right)\right)$ का मान बराबर है :

  • [JEE MAIN 2022]

निम्नलिखित अनुक्रम में वांधित पद ज्ञात कीजिए, जिनका $n$ वाँ पर दिया गया है

$a_{n}=(-1)^{n-1} n^{3} ; a_{9}$

$m$ संख्याओं को $1$ तथा $31$ के रखने पर प्राप्त अनुक्रम एक समांतर श्रेणी है और $7$ वीं एव $(m-1)$ वीं संख्याओं का अनुपात $5: 9$ है। तो $m$ का मान ज्ञात कीजिए।