माना तीन अंक $a, b, c$ $A.P.$ में हैं। इनमें से प्रत्येक अंक को तीन बार प्रयोग कर $9$ अंको की संख्याएँ इस प्रकार बनाई जाती है कि तीन क्रमागत संख्याएँ कम से कम एक बार $A.P.$ में हो। इस प्रकार की कितनी संख्याएँ बनाई जा सकती है ?
$1261$
$1262$
$1263$
$1260$
तीन समान्तर श्रेणियों के $n$ पदों के योगफल${S_1},\;{S_2},\;{S_3}$ हैं जिनके प्रथम पद $1$ और सार्वअन्तर क्रमश: $1, 2, 3$ हैं, तो सत्य सम्बन्ध होगा
यदि ${a_1},\;{a_2},............,{a_n}$ एक समांतर श्रेणी में हैं, जिसका सार्वान्तर $d$ है, तब श्रेणी $\sin d(\cos {\rm{ec}}\,{a_1}.{\rm{cosec}}\,{a_2} + {\rm{cosec}}\,{a_2}.{\rm{cosec}}\,{a_3} + ...........$ $ + {\rm{cosec}}\;{a_{n - 1}}{\rm{cosec}}\;{a_{n - 1}}{\rm{cosec}}\;{a_n})$
चार संख्यायें समान्तर श्रेणी में हैं। यदि प्रथम तथा अंतिम पदों का योग $8$ है तथा दोनों मध्य पदों का गुणनफल $15$ है, तो श्रेणी की न्यूनतम संख्या होगी
श्रेणी $a,a + nd,\,\,a + 2nd$ का माध्य होगा
यदि किसी समांतर श्रेणी के $n$ पदों का योग $n P +\frac{1}{2} n(n-1) Q$, है, जहाँ $P$ तथा $Q$ अचर हो तो सार्व अंतर ज्ञात कीजिए।