माना $\alpha, \beta$ तथा $\gamma$ तीन धनात्मक वास्तविक संख्याएं हैं। माना $f ( x )=\alpha x ^5+\beta x ^3+\gamma x , x \in R$ तथा $g : R \rightarrow R$ इस प्रकार हैं कि सभी $x \in R$ के लिए $g ( f ( x ))= x$ है। यदि $a _1, a _2, a _3, \ldots, a _n$ एक संमातर श्रेढ़ी में है, जिनका माध्य शुन्य है, तो $f \left( g \left(\frac{1}{ n } \sum \limits_{ i =1}^{ n } f \left( a _{ i }\right)\right)\right)$ का मान बराबर है :

  • [JEE MAIN 2022]
  • A

    $0$

  • B

    $3$

  • C

    $9$

  • D

    $27$

Similar Questions

यदि एक समान्तर श्रेणी का प्रथम पद  $2$ तथा सार्वअन्तर $4$ हो, तो उसके $40$ पदों का योग होगा|

श्रेणी $\sqrt 2  + \sqrt 8  + \sqrt {18}  + \sqrt {32}  + .........$ के  $24$ पदों का योगफल है

यदि $n$ प्राकृत संख्या है और श्रेणी $n+2 n+3 n+\cdots+99 n$ का मान एक पूर्ण वर्ग है, तो ऐसे लघुत्तम $n$ के वर्ग, अर्थात $n^2$ में अंको की संख्या होगी :

  • [KVPY 2015]

$5$ और $26$ के बीच ऐसी $5$ संख्याएँ डालिए ताकि प्राप्त अनुक्रम समांतर श्रेणी बन जाए।

किन्हीं तीन धनात्मक वास्तविक संख्याओं $a, b$ तथा $c$ के लिए $9\left(25 a^{2}+b^{2}\right)+25\left(c^{2}-3 a c\right)=15 b(3 a+c)$ है, तो:

  • [JEE MAIN 2017]