यदि $m$ समान्तर श्रेणियों के $n$ पदों के योग क्रमश: ${S_1},\;{S_2},\;{S_3},$……${S_m}$ हैं और इनके प्रथम पद $1,\;2,\;3,$…..$,m$ और सार्वअन्तर क्रमश: $1,\;3,\;5,$……$2m - 1$ हों, तो ${S_1} + {S_2} + {S_3} + ....... + {S_m}$ का मान है

  • A

    $\frac{1}{2}mn(mn + 1)$

  • B

    $mn(m + 1)$

  • C

    $\frac{1}{4}mn(mn - 1)$

  • D

    इनमें से कोई नहीं

Similar Questions

यदि $\alpha ,\;\beta ,\;\gamma $ क्रमश: $ca,\;ab;\;ab,\;bc;\;bc,\;ca$ के गुणोत्तर माध्य हों जहाँ $a,\;b,\;c$ समान्तर श्रेणी में हैं, तो ${\alpha ^2},\;{\beta ^2},\;{\gamma ^2}$ होंगे

यदि A.P. $a _{1} a _{2}, a _{3}, \ldots$ के प्रथम 11 पदों का योगफल $0\left(a_{1} \neq 0\right)$ है और A.P., $a_{1}, a_{3}, a_{5}, \ldots, a_{23}$ का योगफल $ka _{1}$ है, तो $k$ बराबर है -

  • [JEE MAIN 2020]

एक राशि, दूसरी राशि की व्युत्क्रम है। यदि दोनों राशियों का समान्तर माध्य  $\frac{{13}}{{12}}$ है, तो राशियाँ होंगी

यदि एक समांतर श्रेढ़ी का प्रथम पद $3$ है तथा इसके प्रथम $25$ पदों का योग, इसके अगले $15$ पदों के योग के बराबर है, तो इस समांतर श्रेढ़ी का सार्वअंतर है

  • [JEE MAIN 2020]

यदि किसी समांतर श्रेणी का $9$ वाँ पद शून्य हो, तो उसके $29$ वें तथा $19$ वें पदों का अनुपात है