माना $\alpha, \beta, \gamma, \delta \in \mathrm{Z}$ हैं तथा माना एक समांतर चतुर्भज $\mathrm{ABCD}$ के शीर्ष $\mathrm{A}(\alpha, \beta), \mathrm{B}(1,0), \mathrm{C}(\gamma, \delta)$ तथा $\mathrm{D}(1,2)$ हैं। यदि $\mathrm{AB}=\sqrt{10}$ है तथा बिन्दु $\mathrm{A}$ और $\mathrm{C}$, रेखा $3 \mathrm{y}=2 \mathrm{x}+1$ पर है, तो $2(\alpha+\beta+\gamma+\delta)$ बराबर है।

  • [JEE MAIN 2024]
  • A

    $10$

  • B

    $5$

  • C

    $12$

  • D

    $8$

Similar Questions

रेखाओं $x = 0,y = 0$ व $\frac{x}{a} + \frac{y}{b} = 1$ द्वारा बने त्रिभुज का क्षेत्रफल है

किसी आयत की एक भुजा $4x + 7y + 5 = 0$ के अनुदिश है। इसके दो शीर्ष $(-3, 1)$ व $(1, 1)$ हैं, तो अन्य तीन भुजाओं के समीकरण हैं

  • [IIT 1978]

मूलबिन्दु से खींची गयी सरल रेखायुग्म एक अन्य रेखा $2x + 3y = 6$ के साथ समद्विबाहु समकोण त्रिभुज बनाती है, तो सरल रेखाओं के समीकरण एवं इस प्रकार प्राप्त त्रिभुज का क्षेत्रफल होगा

रेखा $x\sin \alpha  + y\cos \alpha  = \sin 2\alpha $ तथा अक्षों से बने त्रिभुज का क्षेत्रफल होगा

$a$ भुजा का एक वर्ग $x$ -अक्ष के ऊपर स्थित है, वर्ग का एक शीर्ष मूलबिन्दु पर है। मूलबिन्दु से गुजरने वाली भुजा $x$ - अक्ष की धनात्मक दिशा से $\alpha $ कोण बनाती है, $\left( {0 < \alpha < \frac{\pi }{4}} \right)$. वर्ग के मूल बिन्दु से नहीं गुजरने वाले विकर्ण का समीकरण है

  • [AIEEE 2003]