Let $S=\left\{Z \in C: \bar{z}=i\left(z^2+\operatorname{Re}(\bar{z})\right)\right\}$. Then $\sum_{z \in S}|z|^2$ is equal to
$\frac{7}{2}$
$4$
$\frac{5}{2}$
$3$
If $z=x+i y, x y \neq 0$, satisfies the equation $z^2+i \bar{z}=0$, then $\left|z^2\right|$ is equal to:
Find the modulus of $\frac{1+i}{1-i}-\frac{1-i}{1+i}$
Let $z$ =${i^{2i}}$ , then $|z|$ is (where $i$ =$\sqrt { - 1}$ )
Let $A =\left\{\theta \in(0,2 \pi): \frac{1+2 i \sin \theta}{1- i \sin \theta}\right.$ is purely imaginary $\}$. Then the sum of the elements in $A$ is
If $z_{1}=2-i, z_{2}=1+i,$ find $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|$