$\left(\sqrt{x}-\frac{6}{x^{\frac{3}{2}}}\right)^n, n \leq 15$ ના દ્વિપદી વિસ્તરણમાંનો અચળ પદ ધારોકે $\alpha$ છે. જો વિસ્તરણમાં ના બાકીના પદો સહગુણકોનો સરવાળો $649$ હોય અને $x^{-n}$ નો સહગુણક $\lambda \alpha$ હોય, તો $\lambda=..........$
$35$
$34$
$36$
$33$
જો ${(1 + x)^{14}}$ ના વિસ્તરણમાં ${T_r},\,{T_{r + 1}},\,{T_{r + 2}}$ ના સહગુણકો સમાંતરશ્રેણી માં હોય, તો $r = $. . . .
જો દ્રીપદી ${(1 + x)^m}$ ના વિસ્તરણમાં ત્રીજું પદ $ - \frac{1}{8}{x^2}$ હોય, તો $m$ ની સંમેય કિમત મેળવો.
સમીકરણ $(1+x)^{10}+x(1+x)^{9}+x^{2}(1+x)^{8}+\ldots+x^{10}$ માં $x^{7}$ નો સહગુણક મેળવો.
${\left[ {\frac{x}{2}\,\, - \,\,\frac{3}{{{x^2}}}} \right]^{10}}$ માં $x^4$ નો સહગુણક મેળવો
${(a + b)^n}$ ના વિસ્તરણમાં ચોથાપદ નો સહગુણક 56 હોય, તો $n$ મેળવો.