माना $A=\left\{\theta \in(0,2 \pi): \frac{1+2 i \sin \theta}{1-i \sin \theta}\right.$ मात्र काल्पनिक $\}$ तो $\mathrm{A}$ में अवयवों का योग है
$\pi$
$2 \pi$
$4 \pi$
$3 \pi$
यदि $\bar z$ सम्मिश्र संख्या $z$ का संयुग्मी हो, तो निम्न में से कौन सा सम्बन्ध असत्य है
यदि $z = \cos \frac{\pi }{6} + i\sin \frac{\pi }{6}$, तब
माना ${z_1}$ व ${z_2}$ दो सम्मिश्र संख्यायें हैं जिनके मुख्य कोणांक $\alpha $ व $\beta $ इस प्रकार हैं कि $\alpha + \beta > \pi ,$ तो $({z_1}\,{z_2})$ का मुख्य कोणांक होगा
माना $S=\{z \in C:|z-1|=1$ तथा $(\sqrt{2}-1)(\mathrm{z}+\overline{\mathrm{z}})-\mathrm{i}(\mathrm{z}-\overline{\mathrm{z}})=2 \sqrt{2}\}$ है
माना $z_1, z_2 \in S$ के लिए $\left|z_1\right|=\max _{z \in S}|z|$ तथा $\left|z_2\right|=\min _{z \in S}|z|$ है, तो $\left|\sqrt{2} z_1-z_2\right|^2$ बराबर है :
$\mathrm{a} \in \mathrm{C}$ के लिए, माना
$\mathrm{A}=\{\mathrm{z} \in \mathrm{C}: \operatorname{Re}(\mathrm{a}+\overline{\mathrm{z}})>\operatorname{Im}(\overline{\mathrm{a}}+\mathrm{z})\}$ तथा
$B=\{z \in C: \operatorname{Re}(a+\bar{z})<\operatorname{Im}(\bar{a}+z)\}$ हैं। तो दो कथनों :
$(S1)$ : यदि $\operatorname{Re}(\mathrm{A}), \operatorname{Im}(\mathrm{A})>0$ है, तो सभी वास्तविक संख्याएँ $A$ में हैं
$(S2)$ : यदि $\operatorname{Re}(\mathrm{A}), \operatorname{Im}(\mathrm{A})<0$ हैं, तो सभी वास्तविक संख्याएँ $\mathrm{B}$ में हैं
इनमें से