$\mathrm{a} \in \mathrm{C}$ के लिए, माना
$\mathrm{A}=\{\mathrm{z} \in \mathrm{C}: \operatorname{Re}(\mathrm{a}+\overline{\mathrm{z}})>\operatorname{Im}(\overline{\mathrm{a}}+\mathrm{z})\}$ तथा
$B=\{z \in C: \operatorname{Re}(a+\bar{z})<\operatorname{Im}(\bar{a}+z)\}$ हैं। तो दो कथनों :
$(S1)$ : यदि $\operatorname{Re}(\mathrm{A}), \operatorname{Im}(\mathrm{A})>0$ है, तो सभी वास्तविक संख्याएँ $A$ में हैं
$(S2)$ : यदि $\operatorname{Re}(\mathrm{A}), \operatorname{Im}(\mathrm{A})<0$ हैं, तो सभी वास्तविक संख्याएँ $\mathrm{B}$ में हैं
इनमें से
केवल $(S1)$ सत्य है
दोनों असत्य हैं
केवल $(S2)$ सत्य है
दोनों सत्य हैं
$\sin \frac{\pi }{5} + i\,\left( {1 - \cos \frac{\pi }{5}} \right)$ का कोणांक होगा
यदि ${z_1},{z_2}$ तथा ${z_3},{z_4}$ संयुग्मी सम्मिश्र संख्याओं के दो युग्म हैं, तब $arg\left( {\frac{{{z_1}}}{{{z_4}}}} \right) + arg\left( {\frac{{{z_2}}}{{{z_3}}}} \right)$बराबर है
$arg\,(5 - \sqrt 3 i) = $
यदि $\frac{3+ i \sin \theta}{4- i \cos \theta}, \theta \in[0,2 \pi]$, एक वास्तविक संख्या है, तो $\sin \theta+i \cos \theta$ का एक कोणांक (argument) है
यदि सम्मिश्र संख्याओं ${z_1}$ तथा ${z_2}$ के लिये $arg({z_1}/{z_2}) = 0,$तब $|{z_1} - {z_2}|$ =