ધારો કે $\left\{a_k\right\}$ અને $\left\{b_k\right\}, k \in N$, એ અનુક્રમે $r _1$ અને $r _2$ સામાન્ય ગુણોત્તરવાળી એવી બે સમગુણોત્તર શ્રેણીઓ છે, જ્યાં $a_1=b_1=4$ અને $r _1 < r _2$. ધારો કે $c _k=a_k+ b _k, k \in N$. જો $c _2=5$ અને $c _3=\frac{13}{4}$ હોય,તો $\sum \limits_{k=1}^{\infty} c _k-\left(12 a_6+8 b_4\right)=............$

  • [JEE MAIN 2023]
  • A

    $9$

  • B

    $18$

  • C

    $20$

  • D

    $22$

Similar Questions

આપેલ સમગુણોત્તર શ્રેણી માટે $a=729$ અને $7$ મું પદ $64$ હોય તો $S$, શોધો. 

$2^{\frac{1}{4}} \cdot 4^{\frac{1}{16}} \cdot 8^{\frac{1}{48}} \cdot 16^{\frac{1}{128}} \cdot \ldots .$ to $\infty$ ની કિમંત મેળવો.

  • [JEE MAIN 2020]

ધારોકે ધન સંખ્યાઓ $a_1, a_2, a_3, a_4$ અને $a_5$ સમગુણોત્તર શ્રેણીમાં છે.ધારોકે તેમના મધ્યક અને વિચરણ અનુક્રમે $\frac{31}{10}$ અન $\frac{m}{n}$ છે,જ્યાં $m$ અને $n$ પરસ્પર અવિભાજ્ય છે.જો તેમના વ્યસ્ત નું મધ્યક $\frac{31}{40}$ અને $a_3+a_4+a_5=14$ હોય, તો $m+n=..........$

  • [JEE MAIN 2023]

શ્રેણીઓ $2,4,8,16,32$ અને $128,32,8,2, \frac{1}{2}$ નાં સંગત પદોના ગુણાકારનો સરવાળો શોધો.

ધારો કે $A_{1}, A_{2}, A_{3}, \ldots$ એ ધન વાસ્તવિક સંખ્યાઓની વધતી સમગુણોત્તર શ્રેણી છે. જો $A _{1} A _{3} A _{5} A _{7}=\frac{1}{1296}$ અને d $A _{2}+ A _{4}=\frac{7}{36}$, હોય તો $A _{6}+ A _{8}+ A _{10}$ નું મૂલ્ય................

  • [JEE MAIN 2022]