ધારોકે ધન સંખ્યાઓ $a_1, a_2, a_3, a_4$ અને $a_5$ સમગુણોત્તર શ્રેણીમાં છે.ધારોકે તેમના મધ્યક અને વિચરણ અનુક્રમે $\frac{31}{10}$ અન $\frac{m}{n}$ છે,જ્યાં $m$ અને $n$ પરસ્પર અવિભાજ્ય છે.જો તેમના વ્યસ્ત નું મધ્યક $\frac{31}{40}$ અને $a_3+a_4+a_5=14$ હોય, તો $m+n=..........$
$210$
$212$
$213$
$211$
જો ${s_n} = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ........ + \frac{1}{{{2^{n - 1}}}}$ ,હોય તો $n$ ની ન્યૂનતમ કિમત મેળવો કે જેથી $2 - {s_n} < \frac{1}{{100}}$ થાય
જો $a$ અને $b$ નો સમગુણોત્તર મધ્યક $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ હોય, તો નું મૂલ્ય શોધો.
જેનાં પ્રથમ બે પદોનો સરવાળો $-4$ હોય અને પાંચમું પદ ત્રીજા પદથી ચાર ગણુ હોય એવી સમગુણોત્તર શ્રેણી શોધો.
$0.\mathop {423}\limits^{\,\,\,\, \bullet \,\,\, \bullet \,} = $
જો સમગુણોતર શ્રેણીના અનંત પદનો સરવાળો $20$ હોય તથા તેમના વર્ગોનો સરવાળો $100$ હોય તો સમગુણોતર શ્રેણીનો ગુણોતર મેળવો.