ધારોકે $f: R \rightarrow R$ એવો વિધેય છે કે જ્યાં $f(x)=\frac{x^2+2 x+1}{x^2+1}$ તો
$f(x)$ એ $(-\infty,-1)$ માં અનેક-એક છે
$f(x)$ એ $(1, \infty)$ માં અનેક-એક છે
$f(x)$ એ $[1, \infty)$ એક-એક છે પરંતુ $(-\infty, \infty)$ માં નથી.
$f(x)$ એ $(-\infty, \infty)$ માં એક-એક છે
વિધેય $f(x) = {\sin ^{ - 1}}5x$ નો પ્રદેશ મેળવો.
ધારો કે $c , k \in R$ ને પ્રત્યેક $x, y \in R$ માટે $f(x)=( c +1) x^{2}+\left(1- c ^{2}\right) x+2 k$ અને $f(x+y)=f(x)+f(y)-x y$ હોય,તો $|2(f(1)+f(2)+f(3)+\ldots \ldots . .+f(20))|$નું મૂલ્ય $\dots\dots$ છે.
જો $f :R \to R$ ; $f(x)\,\, = \,\,\frac{x}{{1 + {x^2}}},\,x\, \in \,R$ હોય તો $f$ નો વિસ્તાર મેળવો.
વિધેય $f(x) = \cos (x/3)$ નો વિસ્તાર મેળવો.
અહી $[x]$ એ મહતમ પૃણાંક વિધેય છે. જો વાસ્તવિક વિધેય $\mathrm{f}(\mathrm{x})=\sqrt{\frac{[\mathrm{x}] \mid-2}{\sqrt{[\mathrm{x}] \mid-3}}}$ નો પ્રદેશ $(-\infty, \mathrm{a}) \cup[\mathrm{b}, \mathrm{c}) \cup[4, \infty), \mathrm{a}\,<\,\mathrm{b}\,<\,\mathrm{c}$, હોય તો $\mathrm{a}+\mathrm{b}+\mathrm{c}$ ની કિમંત મેળવો.