વિધેય $f(x) = \cos (x/3)$ નો વિસ્તાર મેળવો.

  • A

    $( - 1/3,\;1/3)$

  • B

    $[ - 1,\;1]$

  • C

    $(1/3,\; - 1/3)$

  • D

    $( - 3,\;3)$

Similar Questions

જો $f(a) = a^2 + a+ 1$ હોય તો સમીકરણ $f(a^2) = 3f(a)$ ના ઉકેલોની સંખ્યા ........... છે.

અહી $\mathrm{f}(\mathrm{x})$ એ $3$ ઘાતાંક વાળી બહુપદી છે કે જેથી  $\mathrm{k}=2,3,4,5 $ માટે $\mathrm{f}(\mathrm{k})=-\frac{2}{\mathrm{k}}$ થાય છે તો  $52-10 \mathrm{f}(10)$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

વિધાન $-1$ : સમીકરણ $x\, log\, x = 2 - x$ ની $x$ ના ઓછાંમાં ઓછી એક કિમંત $1$ અને $2$ ની વચ્ચે હશે .

વિધાન $-2$ : વિધેય $f(x) = x\, log\, x$ એ અંતરાલ $[1, 2]$ માં વધતું વિધેય છે અને $g (x) = 2 -x$ એ અંતરાલ $[ 1 , 2]$ માં ઘટતું વિધેય છે અને આ વિધેય ના આલેખો છેદબિંદુએ $[ 1 , 2]$ માં આવેલ છે .

  • [JEE MAIN 2013]

સાબિત કરો કે $f: N \rightarrow N$, $f(x)=2 x$ વડે વ્યાખ્યાયિત વિધેય એક-એક છે, પરંતુ વ્યાપ્ત નથી. 

 $x$ ની બધી કિમતો ધરાવતો ગણ મેળવો.

$\frac{{{x^4} - 4{x^3} + 3{x^2}}}{{({x^2} - 4)({x^2} - 7x + 10)}} \ge 0$