Let $a, b, c$ be non-zero real numbers such that $a+b+c=0$, let $q=a^2+b^2+c^2$ and $r=a^4+b^4+c^4$. Then,

  • [KVPY 2014]
  • A

    $q^2 < 2 r$ always

  • B

    $q^2=2 r$ always

  • C

    $q^2 > 2 r$ always

  • D

    $q^2-2 r$ can take both positive and negative values

Similar Questions

If the graph of $y = ax^3 + bx^2 + cx + d$ is symmetric about the line $x = k$ then

Let $\alpha$ and $\beta$ be the roots of $x^2-x-1=0$, with $\alpha>\beta$. For all positive integers $n$, define

$a_n=\frac{\alpha^n-\beta^n}{\alpha-\beta}, n \geq 1$

$b_1=1 \text { and } b_n=a_{n-1}+a_{n+1}, n \geq 2.$

Then which of the following options is/are correct?

$(1)$ $a_1+a_2+a_3+\ldots . .+a_n=a_{n+2}-1$ for all $n \geq 1$

$(2)$ $\sum_{n=1}^{\infty} \frac{ a _{ n }}{10^{ n }}=\frac{10}{89}$

$(3)$ $\sum_{n=1}^{\infty} \frac{b_n}{10^n}=\frac{8}{89}$

$(4)$ $b=\alpha^n+\beta^n$ for all $n>1$

  • [IIT 2019]

The equation $x^2-4 x+[x]+3=x[x]$, where $[x]$ denotes the greatest integer function, has:

  • [JEE MAIN 2023]

Number of natural solutions of the equation $x_1 + x_2 = 100$ , such that $x_1$ and $x_2$ are not multiple of $5$

If ${x^2} + px + 1$ is a factor of the expression $a{x^3} + bx + c$, then

  • [IIT 1980]