The equation $x^2-4 x+[x]+3=x[x]$, where $[x]$ denotes the greatest integer function, has:
exactly two solutions in $(-\infty, \infty)$
no solution
a unique solution in $(-\infty, 1)$
a unique solution in $(-\infty, \infty)$
Let $p(x)=a_0+a_1 x+\ldots+a_n x^n$ be a non-zero polynomial with integer coefficients. If $p(\sqrt{2}+\sqrt{3}+\sqrt{6})=0$, then the smallest possible value of $n$ is
One root of the following given equation $2{x^5} - 14{x^4} + 31{x^3} - 64{x^2} + 19x + 130 = 0$ is
Let $\alpha$ and $\beta$ be two real numbers such that $\alpha+\beta=1$ and $\alpha \beta=-1 .$ Let $p _{ n }=(\alpha)^{ n }+(\beta)^{ n },p _{ n -1}=11$ and $p _{ n +1}=29$ for some integer $n \geq 1 .$ Then, the value of $p _{ n }^{2}$ is .... .
If $\alpha ,\beta$ are the roots of $x^2 -ax + b = 0$ and if $\alpha^n + \beta^n = V_n$, then -
If $a < 0$ then the inequality $a{x^2} - 2x + 4 > 0$ has the solution represented by