Let $\alpha$ and $\beta$ be the roots of $x^2-x-1=0$, with $\alpha>\beta$. For all positive integers $n$, define
$a_n=\frac{\alpha^n-\beta^n}{\alpha-\beta}, n \geq 1$
$b_1=1 \text { and } b_n=a_{n-1}+a_{n+1}, n \geq 2.$
Then which of the following options is/are correct?
$(1)$ $a_1+a_2+a_3+\ldots . .+a_n=a_{n+2}-1$ for all $n \geq 1$
$(2)$ $\sum_{n=1}^{\infty} \frac{ a _{ n }}{10^{ n }}=\frac{10}{89}$
$(3)$ $\sum_{n=1}^{\infty} \frac{b_n}{10^n}=\frac{8}{89}$
$(4)$ $b=\alpha^n+\beta^n$ for all $n>1$
$1,2,3$
$1,2$
$1,2,4$
$2,3$
The sum of all the roots of the equation $\left|x^2-8 x+15\right|-2 x+7=0$ is:
The number of ordered pairs $(x, y)$ of positive integers satisfying $2^x+3^y=5^{x y}$ is
If the product of roots of the equation ${x^2} - 3kx + 2{e^{2\log k}} - 1 = 0$ is $7$, then its roots will real when
Let $\alpha$ and $\beta$ be two real numbers such that $\alpha+\beta=1$ and $\alpha \beta=-1 .$ Let $p _{ n }=(\alpha)^{ n }+(\beta)^{ n },p _{ n -1}=11$ and $p _{ n +1}=29$ for some integer $n \geq 1 .$ Then, the value of $p _{ n }^{2}$ is .... .
Let $\mathrm{S}$ be the set of positive integral values of $a$ for which $\frac{\mathrm{ax}^2+2(\mathrm{a}+1) \mathrm{x}+9 \mathrm{a}+4}{\mathrm{x}^2-8 \mathrm{x}+32}<0, \forall \mathrm{x} \in \mathbb{R}$. Then, the number of elements in $\mathrm{S}$ is :