If ${x^2} + px + 1$ is a factor of the expression $a{x^3} + bx + c$, then
${a^2} + {c^2} = - ab$
${a^2} - {c^2} = - ab$
${a^2} - {c^2} = ab$
None of these
The sum of all real values of $x$ satisfying the equation ${\left( {{x^2} - 5x + 5} \right)^{{x^2} + 4x - 60}} = 1$ is ;
If the inequality $kx^2 -2x + k \geq 0$ holds good for atleast one real $'x'$ , then the complete set of values of $'k'$ is
The number of integers $k$ for which the equation $x^3-27 x+k=0$ has at least two distinct integer roots is
Let $p, q$ be integers and let $\alpha, \beta$ be the roots of the equation, $x^2-x-1=0$, where $\alpha \neq \beta$. For $n=0,1,2, \ldots$, let $a_n=$ $p \alpha^n+q \beta^n$.
$FACT$ : If $a$ and $b$ are rational numbers and $a+b \sqrt{5}=0$, then $a=0=b$.
($1$) $a_{12}=$
$[A]$ $a_{11}-a_{10}$ $[B]$ $a_{11}+a_{10}$ $[C]$ $2 a_{11}+a_{10}$ $[D]$ $a_{11}+2 a_{10}$
($2$) If $a_4=28$, then $p+2 q=$
$[A] 21$ $[B] 14$ $[C] 7$ $[D] 12$
answer the quetion ($1$) and ($2$)
The locus of the point $P=(a, b)$ where $a, b$ are real numbers such that the roots of $x^3+a x^2+b x+a=0$ are in arithmetic progression is