અહી $f(x)=x^6-2 x^3+x^3+x^2-x-1$ અને $g(x)=x^4-x^3-x^2-1$ બે બહુપદી છે. અહી $a, b, c$ અને $d$ એ $g(x)=0$ ના બીજ હોય તો $f(a)+f(b)+f(c)+f(d)$ ની કિમંત મેળવો.
$-5$
$0$
$4$
$5$
કોઈક વાસ્તવિક અચળાંક $a$ માટે વિધેય $f: R-\{-a\} \rightarrow R$ તથા $f(x)=\frac{a-x}{a+x}$ હોય વધારામાં ધારો કે કોઈક વાસ્તવિક સંખ્યા $x \neq- a$ અને $f( x ) \neq- a$ માટે $( fof )( x )= x$ થાય તો $f\left(-\frac{1}{2}\right)$ ની કિમત શોધો
વિધેય $f(x)={\left( {1 + \frac{1}{x}} \right)^x}$ હોય તો $f (x)$ નો પ્રદેશ મેળવો.
$\left[ {\frac{1}{2}} \right] + \left[ {\frac{1}{2} + \frac{1}{{100}}} \right] + \left[ {\frac{1}{2} + \frac{2}{{100}}} \right] + .... + \left[ {\frac{1}{2} + \frac{{99}}{{100}}} \right] = . . . . $ (કે જ્યાં $[x]$ એ મહતમ પૃણાંક વિધેય છે )
વિધેય $f\left( x \right) = {\cos ^2}\left( {\sin x} \right) + {\sin ^2}\left( {\cos x} \right)$ નુ આવર્તમાન મેળવો.
વિધેય $f(x) = {\sin ^{ - 1}}5x$ નો પ્રદેશ મેળવો.