$l,m,n$ એ ધન સમગુણોતર શ્રેણીના ${p^{th}},{q^{th}}$ અને ${r^{th}}$ ના પદો હોય તો $\left| {\,\begin{array}{*{20}{c}}{\log l}&{p\,\,\,\,\,\begin{array}{*{20}{c}}1\end{array}}\\{\log m}&{q\,\,\,\,\,\begin{array}{*{20}{c}}1\end{array}}\\{\log n}&{r\,\,\,\,\,\begin{array}{*{20}{c}}1\end{array}}\end{array}\,} \right|$ = . . . .
$-1$
$2$
$1$
$0$
જો $A_1B_1C_1,\, A_2B_2C_2,\, A_3B_3C_3$ એ ત્રણ અંકોની સંખ્યા છે કે જે $k$ વડે વિભાજ્ય છે અને $\Delta = \left| {\begin{array}{*{20}{c}}
{{A_1}{\kern 1pt} }&{{B_1}}&{{C_1}} \\
{{A_2}}&{{B_2}}&{{C_2}} \\
{{A_3}}&{{B_3}}&{{C_3}}
\end{array}} \right|$ હોય તો $\Delta $ એ . . વડે વિભાજ્ય છે .
$\left| {\begin{array}{*{20}{c}}0&a&{ - b}\\{ - a}&0&c\\b&{ - c}&0\end{array}} \right| = $
જો $\omega $ એ એકનું કાલ્પનિક ઘનમૂળ હોય તો $\Delta = \left| {\begin{array}{*{20}{c}}1&{2\omega }\\\omega &{{\omega ^2}}\end{array}} \right|$, તો ${\Delta ^2}$ = . . .
$\Delta = \left| {\,\begin{array}{*{20}{c}}{a + x}&b&c\\b&{x + c}&a\\c&a&{x + b}\end{array}\,} \right|$ નો અવયવ . . . .થાય.
સુરેખ સમીકરણોની સંહતિ $\lambda x+2 y+2 z=5$ ; $2 \lambda x+3 y+5 z=8$ ; $4 x+\lambda y+6 z=10$ ને . . . .