અહી $\alpha, \beta(\alpha>\beta)$ એ દ્રીઘાત સમીકરણ $x ^{2}- x -4=0$ ના બીજ છે. જો $P _{ a }=\alpha^{ n }-\beta^{ n }, n \in N$ તો $\frac{ P _{15} P _{16}- P _{14} P _{16}- P _{15}^{2}+ P _{14} P _{15}}{ P _{13} P _{14}}$ ની કિમંત $......$ થાય.
$15$
$14$
$13$
$16$
સમીકરણ ${x^2} - |x + 2| + x > 0,$ માટે, $x$ ની વાસ્તવિક સંખ્યાઓનો ગણ મેળવો.
સમીકરણ ${x^3}(x + 1) = 2(x + a)(x + 2a)$ ને ચાર ઉકેલો મળે તે માટે $a$ નો ગણ મેળવો
જો ${\rm{x}}$ બરાબર શું થાય, તો $\frac{{8{x^2}\, + \,16x\, - \,51}}{{(2x - \,3)\,(x\, + \,4)}}\, > \,3\,\, = \,\,\,......$
સમીકરણ $2^{x + 2} 27^{x/(x - 1)} = 9$ ના બીજ મેળવો.
જો $y = \sqrt {\frac{{(x + 1)(x - 3)}}{{(x - 2)}}} $, તો $y$ પણ વાસ્તવિક કિમંત ધરાવે તેના માટે $x$ ની વાસ્તવિક કિમંતો . . . .