સમીકરણ ${x^3}(x + 1) = 2(x + a)(x + 2a)$ ને ચાર ઉકેલો મળે તે માટે $a$ નો ગણ મેળવો
$[-1,2]$
$[-3,7]$
$[-2,4]$
$\left[ { - \frac{1}{8},\frac{1}{2}} \right]$
જો $\alpha , \beta , \gamma$ એ સમીકરણ $x^3 + qx -r = 0$ ના ઉકેલો હોય તો ક્યાં સમીકરણના ઉકેલો $\left( {\beta \gamma + \frac{1}{\alpha }} \right),\,\left( {\gamma \alpha + \frac{1}{\beta }} \right),\,\left( {\alpha \beta + \frac{1}{\gamma }} \right)$ થાય ?
$x^2 - 6x - 2 = 0$ ના બીજ $\alpha$ અને $\beta$ લો. જ્યાં $\alpha$ > $\beta$ જો બધા $n \geq 1$ માટે $a_n = \alpha^n - \beta^n$ હોય, તો $\frac{{{a_{10}} - 2{a_8}}}{{2{a_9}}}$ નું મૂલ્ય કેટલું થાય ?
સમીકરણ $\sqrt {x + 3 - 4\sqrt {x - 1} } + \sqrt {x + 8 - 6\sqrt {x - 1} } = 1$ નો ઉકેલ મેળવો
સમીકરણ $x^2 - 3 | x | + 2 = 0$ ના વાસ્તવિક ઉકેલોની સંખ્યા કેટલી હોય ?
જો $a, b, c \in R$ અને $1$ એ સમીકરણ $ax^2 + bx + c = 0$ ના ઉકેલો હોય તો વક્ર y $= 4ax^2 + 3bx+ 2c, a \ne 0$ એ $x-$ ક્યાં બિંદુએ છેદશે ?