माना $S =\left[-\pi, \frac{\pi}{2}\right)-\left\{-\frac{\pi}{2},-\frac{\pi}{4},-\frac{3 \pi}{4}, \frac{\pi}{4}\right\}$ है। तब समुच्चय $A =\{\theta \in S : \tan \theta(1+\sqrt{5} \tan (2 \theta))=\sqrt{5}-\tan (2 \theta)\}$ में अवयवों की संख्या है
$0$
$5$
$3$
$4$
यदि $/cot (\alpha + \beta ) = 0,$ तब $\sin (\alpha + 2\beta ) = $
समीकरण $\sin x + \sin y + \sin z = - 3$, $0 \le x \le 2\pi ,$ $0 \le y \le 2\pi ,$ $0 \le z \le 2\pi $ के लिए रखता है
अन्तराल $[0, 5 \pi ]$ में $x$ के मानों की संख्या जो समीकरण $3{\sin ^2}x - 7\sin x + 2 = 0$ को संतुष्ट करे, है
यदि $\frac{{\tan 3\theta - 1}}{{\tan 3\theta + 1}} = \sqrt 3 $, तो $\theta $ का व्यापक मान है
$\theta $का वह मान, जो कि $0$ एवं $\frac{\pi }{2}$ के मध्य हो तथा समीकरण
$\left| {\,\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{1 + {{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta }\end{array}\,} \right| = 0$
को संतुष्ट करता हो, है