Let $S=\left\{z \in C : z^{2}+\bar{z}=0\right\}$. Then $\sum \limits_{z \in S}(\operatorname{Re}(z)+\operatorname{Im}(z))$ is equal to$......$
$1$
$2$
$3$
$0$
If complex numbers $(x -2y) + i(3x -y)$ and $(2x -y) + i(x -y + 6)$ are conjugates of each other, then $|x + iy|$ is $(x,y \in R)$
Let $\bar{z}$ denote the complex conjugate of a complex number $z$. If $z$ is a non-zero complex number for which both real and imaginary parts of
$(\bar{z})^2+\frac{1}{z^2}$
are integers, then which of the following is/are possible value($s$) of $|z|$ ?
If the conjugate of $(x + iy)(1 - 2i)$ be $1 + i$, then
Let $z,w$be complex numbers such that $\overline z + i\overline w = 0$and $arg\,\,zw = \pi $. Then arg z equals
If $\frac{{2{z_1}}}{{3{z_2}}}$ is a purely imaginary number, then $\left| {\frac{{{z_1} - {z_2}}}{{{z_1} + {z_2}}}} \right|$ =