Let $\bar{z}$ denote the complex conjugate of a complex number $z$. If $z$ is a non-zero complex number for which both real and imaginary parts of

$(\bar{z})^2+\frac{1}{z^2}$

are integers, then which of the following is/are possible value($s$) of $|z|$ ?

  • [IIT 2022]
  • A

    $\left(\frac{43+3 \sqrt{205}}{2}\right)^{\frac{1}{4}}$

  • B

    $\left(\frac{7+\sqrt{33}}{4}\right)^{\frac{1}{4}}$

  • C

    $\left(\frac{9+\sqrt{65}}{4}\right)^{\frac{1}{4}}$

  • D

    $\left(\frac{7+\sqrt{13}}{6}\right)^{\frac{1}{4}}$

Similar Questions

If $z =2+3 i$, then $z ^{5}+(\overline{ z })^{5}$ is equal to.

  • [JEE MAIN 2022]

For any complex number $z,\bar z = \left( {\frac{1}{z}} \right)$if and only if

If ${z_1},{z_2},{z_3}$be three non-zero complex number, such that ${z_2} \ne {z_1},a = |{z_1}|,b = |{z_2}|$ and $c = |{z_3}|$ suppose that $\left| {\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}} \right| = 0$, then $arg\left( {\frac{{{z_3}}}{{{z_2}}}} \right)$ is equal to

If $|{z_1}|\, = \,|{z_2}|$ and $amp\,{z_1} + amp\,\,{z_2} = 0$, then

If $z$ and $\omega$ are two complex numbers such that $|z \omega|=1$ and $\arg (z)-\arg (\omega)=\frac{3 \pi}{2}$, then $\arg \left(\frac{1-2 \bar{z} \omega}{1+3 \bar{z} \omega}\right)$ is:

(Here arg(z) denotes the principal argument of complex number $z$ )

  • [JEE MAIN 2021]