माना $S=\left\{z \in C : z^2+\bar{z}=0\right\}$. है। तब $\sum_{z \in S}(\operatorname{Re}(z)+\operatorname{Im}(z))$ बराबर है $.........$
$1$
$2$
$3$
$0$
$1 + i$ का संयुग्मी है
यदि $z$ एक ऐसी सम्मिश्र संख्या है कि $|z| \geq 2$ है, तो $\mid z+\frac{1}{2} \mid$ का न्यूनतम मान:
सम्मिश्र संख्याओं ${z_1}$और ${z_2}$के लिये सत्य कथन
यदि $|1-i|^x=2^x$ के हलों की संख्या $\alpha$ है तथा $\beta=\left(\frac{|\mathrm{z}|}{\arg (\mathrm{z})}\right)$ है, जहाँ $\mathrm{z}=\frac{\pi}{4}(1+\mathrm{i})^4\left(\frac{1-\sqrt{\pi} \mathrm{i}}{\sqrt{\pi}+\mathrm{i}}+\frac{\sqrt{\pi}-\mathrm{i}}{1+\sqrt{\pi} \mathrm{i}}\right), \mathrm{i}=\sqrt{-1}$ है, तो रेखा $4 x-3 y=7$ से बिंदु $(\alpha, \beta)$ की दूरी है................
यदि $\sqrt 3 + i = (a + ib)(c + id)$, तब ${\tan ^{ - 1}}\left( {\frac{b}{a}} \right) + $${\tan ^{ - 1}}\left( {\frac{d}{c}} \right)$ का मान है