If the conjugate of $(x + iy)(1 - 2i)$ be $1 + i$, then
$x = \frac{1}{5}$
$y = \frac{3}{5}$
$x + iy = \frac{{1 - i}}{{1 - 2i}}$
$x - iy = \frac{{1 - i}}{{1 + 2i}}$
Let $z,w$be complex numbers such that $\overline z + i\overline w = 0$and $arg\,\,zw = \pi $. Then arg z equals
Let $z =1+ i$ and $z _1=\frac{1+ i \overline{ z }}{\overline{ z }(1- z )+\frac{1}{ z }}$. Then $\frac{12}{\pi}$ $\arg \left(z_1\right)$ is equal to $..........$.
If $z = x + iy\, (x, y \in R,\, x \neq \, -1/2)$ , the number of values of $z$ satisfying ${\left| z \right|^n}\, = \,{z^2}{\left| z \right|^{n - 2}}\, + \,z{\left| z \right|^{n - 2}}\, + \,1\,.\,\left( {n \in N,n > 1} \right)$ is
If $z$ is a purely real number such that ${\mathop{\rm Re}\nolimits} (z) < 0$, then $arg(z)$ is equal to
For any two complex numbers ${z_1},{z_2}$we have $|{z_1} + {z_2}{|^2} = $ $|{z_1}{|^2} + |{z_2}{|^2}$ then