माना $a , b$ दो शून्येत्तर वास्तविक संख्याएँ हैं। एक समीकरण $x^2-8 a x+2 a=0$ के मूल $p$ तथा $r$ हैं और समीकरण $x ^2+12 bx +6 b =0$, के मूल $q$ तथा $s$ हैं, इस प्रकार कि $\frac{1}{ p }, \frac{1}{ q }, \frac{1}{ r }, \frac{1}{ s }$ A.P. में हैं,तो $a^{-1}-b^{-1}$ बराबर है $................$
$37$
$36$
$38$
$32$
$1$ से $100$ तक आने वाले उन सभी पूर्णांकों का योगफल ज्ञात कीजिए जो $2$ या $5$ से विभाजित हों।
यदि $2x,\;x + 8,\;3x + 1$ समान्तर श्रेणी में हैं, तो $x$ का मान होगा
यदि $a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$ समांतर श्रेणी में हैं, तो सिद्ध कीजिए कि $a, b, c$ समांतर श्रेणी में हैं।
यदि ${a_1},\;{a_2},\,{a_3},......{a_{24}}$ समान्तर श्रेणी में हैं तथा ${a_1} + {a_5} + {a_{10}} + {a_{15}} + {a_{20}} + {a_{24}} = 225$, तो ${a_1} + {a_2} + {a_3} + ........ + {a_{23}} + {a_{24}} = $
मान लें कि $a_n$, एक अंकगणितीय श्रेढ़ी $(arithmetic\,progression)$ है, जहाँ $n \geq 1$ है और इस श्रेढ़ी का पहला पद $2$ और सार्व अंतर $(common\,difference)$ $4$ है। मान लें कि $M_n$ पहले $n$ पदों का औसत है, तब योग $\sum \limits_{n=1}^{10} M_n$ क्या होगा ?